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Stochastic thermostats commonly used in molecular dynamics trajectories are known, under cer-
tain conditions, to exhibit a synchronization effect whereby trajectories initialized at different points
in phase space synchronize to a single master trajectory if they are subjected to the same sequence
of random forces. We investigate the spatio-temporal robustness of this effect analytically and
with molecular dynamics simulations in one and three dimensions in the strong coupling limit. We
first investigate the response of the system to a time- and space-wise local perturbation and show
that desynchronization behaves diffusively at long times for infinite systems. We then explore the
behavior of temporally persistent but spatially local perturbations and observe strikingly differ-
ent behaviors as a function of dimensionality: in one dimension, the desynchronization propagates
through the whole lattice and grows with time, while in three dimensions, the desynchronization
remains localized in the neighborhood of the perturbation.

I. INTRODUCTION

Molecular dynamics (MD) simulations — the numeri-
cal integration of atomistic equations of motion — find
applications across a broad range of disciplines, allow-
ing for atomic-scale studies within chemistry, materials
science and biology.

In many cases, it is desirable to advance the equa-
tions of motion in a way that is appropriate for a ther-
mal system, i.e., to mimic canonical ensemble behavior
(characterized by fixed temperature, volume, and parti-
cle number). Two widely used methods that success-
fully achieve canonical sampling are the Andersen [1]
and the Langevin [2] thermostats. Both of these are
stochastic in nature, as they use pseudo-random num-
bers in the equations of motion to introduce noise into
the systems, which mimic random solvent collisions. Pre-
vious studies have revealed that stochastic thermostats
have a rather interesting property: under suitable con-
ditions, two thermostatted trajectories subject to iden-
tical stochastic force sequences, but having different ini-
tial conditions, can synchronize in phase space to a single
“master trajectory”. The phenomenon has been observed
for a wide range of potentials and temperatures, and even
for rather complex systems. Fahy and Hamman [3] found
the rate of synchronization for regular-time Andersen
thermostat, while Maritan and Banavar [4], and Ciesla et
al. [5] observed synchronization in Langevin thermostats.
Uberuaga et al. [6] studied the synchronization dynam-
ics as a function of the thermostat coupling strength for
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harmonic potentials. They also demonstrated that syn-
chronization occurs for a system of 97 atoms interacting
via a many-body interatomic potential. Finally, Sind-
hikara and co-workers showed the effect occurs even for
complex biological molecules [7].

In this paper, we further characterize the evolution of
this synchronization effect through space and time. We
focus on the Langevin thermostat, for which the classi-
cal equations of motion are augmented by viscous drag
and Gaussian-distributed stochastic forces. By deriving
equations of motions for the desynchronization in the
continuum limit, we first analyze the response of one-
and three-dimensional systems to an instantaneous per-
turbation (localized in time and space, such as poking
one atom at t = 0). We show that the propagation of the
desynchronization becomes diffusive at large times. We
validate the results against one- and three-dimensional
face-centered cubic (FCC) crystals interacting via the
Lennard-Jones potential in the high friction limit. How-
ever, we emphasize that the results are not confined to a
particular type of potential or crystal structure.

Building on the results for an instantaneous pertur-
bation, we extend the analysis to treat time-persistent
perturbations, such as changing the sequence of random
forces on one single atom (while leaving all other forces
the same). In doing so, we discover an interesting effect.
Due to the persistent randomness induced by the stochas-
tic forces, one might expect that the distance in phase-
space between the two simulations would increase and
the simulations would become statistically independent.
This intuition is confirmed for infinite one-dimensional
systems, where the root mean square (rms) of the desyn-
chronization (taken over many simulations with different
random seeds) continuously grows with time for every
atom in the chain. However, for three-dimensional crys-
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tals the behavior is found to be quite different. We find
that for every atom in the crystal, instead of growing
to infinity, the rms desynchronization reaches a constant
asymptotic value. Furthermore, the desynchronization
remains localized around the center of disturbance, and
falls with distance roughly as 1/r2 at long times.
Our results demonstrate the robustness of the

Langevin synchronization effect; for a three-dimensional
system, even a persistent, random force applied to this
atom only disrupts the synchronization locally, while dis-
tant parts of the system remain well synchronized. Aside
from our interest in this Langevin synchronization phe-
nomenon at a fundamental level, increasing our under-
standing of it may also be useful in the development of
advanced computational methods. Exploring the char-
acteristics of this synchronization phenomenon increases
our understanding of modern atomistic simulation meth-
ods that employ stochastic thermostats, which is helpful
both for avoiding the potential pitfalls [7] as well as in the
development of new methods. For example, a parallel-in-
time algorithm for accelerating infrequent events can be
formulated by exploiting synchronization [6]. The under-
standing developed here, that a transient force error in
a three-dimensional system is self-correcting, and even a
persistent force error of the right nature only modifies
the dynamics in a spatially local way, should be useful in
this regard. This behavior could be exploited for exam-
ple, on a computer architecture for which there may be
occasional, brief errors in the atomic forces. While for
many algorithms this could not be tolerated, a molecular
dynamics simulation coupled to a Langevin thermostat
would maintain high accuracy in the face of this.
The paper is organized as follows: in Section II, we

derive analytical expressions for the response of one- and
three-dimensional systems to perturbations that are local
in space and time. These results are validated through
comparison with MD simulations in Section III. Our
analysis is extended to temporally persistent perturba-
tions in Section IV, and these results are also validated
through comparison with direct MD simulations in Sec-
tion V.

II. INSTANTANEOUS PERTURBATIONS:

“POKING”

As discussed above, we are interested in characteriz-
ing the evolution of the desynchronization in Langevin
dynamics caused by an external perturbation. In this
section we consider an instantaneous and spatially local-
ized disturbance: a single poke of a single atom in the
lattice. Between two otherwise identical simulations, we
consider the differences resulting from the addition of an
initial velocity V to a single atom.
We begin developing the theory by obtaining the equa-

tion of motion that describes the evolution of the dis-
turbance in space and time. We consider either one or
three-dimensional lattices of atoms of mass m. Through-

out the paper we define a to be the equilibrium distance
between the nearest-neighbor atoms. Denoting the posi-
tion of the ith atom with xi and the net force acting upon
it with Fi = −∂U/∂xi, with U to total potential energy
of the system, the equations of motion under Langevin
dynamics read:

ẍi + αẋi =
1

m
Fi +

1

m
Ai. (1)

Ai(t) is a function of time and represents the stochastic
force acting on atom i. Setting the noise sequence Ai (t)
of any atom i to be identical for both runs, the desyn-

chronization ui(t) = x
(2)
i (t) − x

(1)
i (t) resulting from the

poke evolves according to:

üi + αu̇i =
1

m
∆Fi, (2)

where ∆Fi(t) = F
(2)
i (t)−F (1)

i (t) is the difference in forces
acting on atom i between the two runs. At low enough
temperature, the potential energy of the system can be
considered quadratic in the displacement from equilib-
rium, i.e., U ≃ (x−xeq)TH(x−xeq) where H is the Hes-
sian matrix defined as Hij = ∂2U/∂xi∂xj . The equation
of motion of the desynchronization then becomes:

ü+ αu̇ = − 1

m
Hu. (3)

A. Infinite one-dimensional harmonic chain

We start with the evolution of the desynchronization in
the continuum limit in one dimension, and we will later
investigate three-dimensional lattices. In one dimension,
the right-hand-side of Eq (3) directly corresponds to a
discretized form of the second derivative of the desyn-
chronization (this can also be obtained in the general
case through a small wavevector expansion), and the dis-
crete equation of motion can be written as a damped
wave equation:

∂2u

∂t2
+ α

∂u

∂t
− c2

∂2u

∂x2
= 0, (4)

where c is the propagation speed of the wave through the
medium. Applying a poke of strength V at (x, t) = (0, 0)
and accounting for the fact that in one dimension there
is one atom per length a, the initial conditions are:

u(x, 0) = 0 (5)

∂u

∂t
(x, 0) = V δ

(x

a

)

, (6)

where δ is the Dirac-delta function. Using Riemann’s
Method [8] to solve this equation, we obtain:

u(x, t) =







aV
2c e

− 1

2
αtI0

(

α
2c

√

(ct)2 − x2
)

, |x| < ct

0, otherwise,
(7)
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where I0 (ξ) is a modified Bessel function of the first
kind and order 0. This solution is restricted to the over-
damped case, as we will see later in Section II B. This
central result for the one-dimensional chain is compared
with a molecular dynamics simulation of a Lennard-Jones
chain in Section IIIA.
It is insightful to consider the large time limit of the

above result, making use of the asymptotic form of In for
large arguments [9], namely

In(ξ) →
eξ√
2πξ

for ξ ≫ 1, (8)

which yields:

u(x, t) → aV

c
√
4παt

e−
αx2

4c2t for t≫ 1

α
, |x| ≪ ct. (9)

Although |x| ≪ ct is formally required, at large time the
desynchronization around x ≈ ct is very close to zero
and the discontinuity at x = ct becomes unobservable.
Therefore, only the requirement t≫ 1

α remains of practi-
cal importance and Eq (9) can be taken as approximately
valid for all x.
Eq (9) implies that at large time the desynchronization

is the fundamental solution to the diffusion equation:

α
∂u

∂t
= c2

∂2u

∂x2
(10)

for initial conditions:

u(x, 0) =
V

α
δ
(x

a

)

(11)

∂u

∂t
(x, 0) = 0. (12)

This implies that the total integrated desynchronization
is conserved during further evolution.

B. Periodic one-dimensional harmonic chain

Consider now a finite lattice of length L with periodic
boundary conditions, where again we poke the atom lo-
cated at x = 0 at time t = 0. This can also be treated as
an infinite lattice with periodic pokes, i.e. we can solve
Eq (4) with initial conditions:

u (x, 0) = 0 (13)

u̇ (x, 0) = V
∑

n∈Z

δ

(

x− nL

a

)

, (14)

where L is the lattice size. The solution for a finite pe-
riodic lattice is then a superposition of the solutions for
one poke, and we find:

upbc (x, t) =
∑

n∈Z

u (nL+ x, t) . (15)

Here u is given by Eq (7), or Eq (9) at large times.
As shown in the previous section in Eq (7), all atoms
with |x| > ct are completely synchronized. Therefore,
the solution for a finite lattice with periodic boundary
conditions remains identical within one period to the so-
lution for an infinite lattice until the desynchronization
wave reaches the boundaries of the lattice (thus until
ct = L/2).
Since our lattice is now finite, another effect needs to

be considered. Adding a poking velocity V to one of
the atoms induces an initial drift velocity V/N of the
entire lattice where N is the number of atoms. Due to
damping, the two systems will continue to desynchro-
nize with drift velocity vdrift(t) = V/Ne−αt, which re-
sults in a shift of the center of mass of the lattice equal
to V/(αN) (1− e−αt). In order to correct for this, we
subtract the displacement of the center of mass from the
position of each atom. The resulting desynchronization
for periodic boundary conditions after subtracting the
displacement of the center of mass becomes:

upbc (x, t) =
∑

n∈Z

u (nL+ x, t)− 1

L

∫ ∞

−∞

u (x′, t) dx′.

(16)

In the second term on the right hand side of the equation
we have exploited the fact that integrating the desyn-
chronization from a single poke over an infinite space is
equivalent to summing the contributions from the infinite
set of pokes and integrating that over one period. Using
the large time limit as in Eq (9) and rewriting Eq (16)
in terms of its Fourier series, we obtain the following for
the desynchronization:

upbc (x, t) =
2aV

αL

∑

n≥1

e−
ω2
0
n2

α t cos (nk0x) (17)

where ω0 = 2πc/L = c k0 is the fundamental frequency.
The solution represents the exponential decay of the

normal modes amplitude in a one-dimensional lattice at
high friction. The desynchronization was obtained by
taking the sum over all modes with n > 0 of the Fourier
transform of Eq (9). The mode with n = 0 corresponded
to the drift of the center of mass of the lattice, which
was excluded from the result. The cosine factor gives the
desynchronization of the other atoms in the lattice as a
function of distance from the poked atom.
For each mode, the decay matches the result obtained

by Uberuaga et al. [6, Eqs 5-7] in the limit of high fric-
tion (for the overdamped case). If one was to consider
oscillations in a harmonic potential (as in Eq (4)), the
full solution for each mode would be

un(x, t) =
2aV

αL
e−αt/2Re

(

e
√
α2−4n2ω2

0

t
2

)

cos(nk0x),

(18)
which is overdamped for α > 2nω0, and underdamped
otherwise.
As we will see in Section III when we compare to MD

simulations, it is enough to require that α is sufficiently
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large to make the lowest few modes overdamped. As
long as the contribution from the high-frequency under-
damped modes is small even at low time compared to the
analytical prediction from Eq (7), then these modes act
as high-frequency small oscillations superimposed on the
analytical results from Eqs (4) and (8) (for the infinite
chain), or (17) (for periodic boundary conditions).
At long times, the higher frequency modes decay at a

higher rate, and the solution for periodic boundary con-
ditions reduces only to the dominant term:

upbc (x, t) ≈
2aV

αL
e−

ω2
0

α t cos (kx) for t≫ α

4ω2
0

, (19)

which, in contrast to the infinite lattice, corresponds to
an exponential decay of the desynchronization with time.

C. Three dimensional lattice

A similar treatment is possible for three-dimensional
perfect crystals. Starting from Eq (3) and carrying out
a low wavevector expansion, one can obtain a general
continuum wave equation of the form [10]:

üi + αu̇ =
1

ρ

∑

j,k,l

ci,j,k,l
∂2uk
∂xj∂xl

, (20)

where ci,j,k,l are the elastic constants of the solid and ρ is
its density. For elastically isotropic solids, this equation
takes the simpler form:

ü+ αu̇ =
1

ρ

(

(λ+ µ)∇ (∇ · u) + µ∇2u
)

=
1

ρ
((λ+ 2µ)∇ (∇ · u)− µ∇× (∇× u)) .

(21)

Here λ and µ are the Lamé parameters describing the
elastic properties of the medium [11]. The longitudinal
and transverse propagation speeds of the wave through
the lattice are respectively:

c2l =
λ+ 2µ

ρ
, c2t =

µ

ρ
. (22)

For poking of an atom in the z-direction, the initial con-
ditions imposed on the system in three dimensions are:

u (r, 0) = 0

u̇ (r, 0) = V δ
(r

l

)

ẑ (23)

where ẑ is the unit vector in z direction and l is a length
element such that there is one atom per volume of l3. For
a face-centered cubic lattice (as investigated in the next
section) there are four atoms per unit cell with volume

of
(√

2a
)3
, or equivalently one atom per volume of l3 =

a3/
√
2.

Since the desynchronization field and its partial deriva-
tives are continuous, we can write u(r, t) as the sum of
an irrotational (curl-free) vector field and a solenoidal
(divergence-free) vector field according to Helmholtz’s
theorem [12]:

u(r, t) = f (r, t) + h(r, t) (24)

f (r, t) = −∇ψ(r, t) s.t. ∇× f = 0

h(r, t) = ∇×A(r, t) s.t. ∇ · h = 0. (25)

Given that differentiation with respect to time commutes
with differentiation with respect to the spatial coordi-
nates, we obtain that the irrotational and solenoidal parts
of the time derivative u̇ are the same as the time deriva-
tives of f and h respectively:

irrot(u̇) = ḟ and solen(u̇) = ḣ. (26)

Consequently, Eq (21) decouples into two separate equa-
tions:

f̈ + αḟ = c2l∇ (∇ · f)
ḧ+ αḣ = −c2t∇×∇× h. (27)

Consider first the particular case of equal longitudinal
and transverse propagation speeds c ≡ cl = ct in Eq (21).
In this case, the desynchronization obeys the following
damped wave equation

ü+ αu̇ = c2∇2u (28)

with solution u(r, t) = u(r, t)ẑ, for:

u(r, t) =



















l3V α

8c2π
√

(ct)2 − r2
e−

1

2
αtI1

(

α
2c

√

(ct)2 − r2
)

,

r < ct

0, otherwise.
(29)

In the equation above, I1 is the modified Bessel function
of the first kind and order one. Similarly to the one-
dimensional case, we use the large argument limit of the
Bessel function from Eq (8) to find the desynchronization
at large times: u(r, t) = g(r, t)ẑ, where g(r, t) is the
three-dimensional Gaussian:

g(r, t) =
l3V

c3

√
α

(4πt)3/2
e−

αr2

4c2t =
l3V

α

1

(
√
2πσ)3

e−
r2

2σ2 .

(30)

Here σ denotes the standard deviation of the Gaussian
distribution above, and is given by:

σ(t) =

√

2t

α
c. (31)

Note that the three-dimensional Gaussian is the fun-
damental solution to the diffusion equation αġ(r, t) =
c2∇2g(r, t).
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From all of the above, and by analogy to the over-
damped one-dimensional chain, we expect that for times
below a few multiples of 1/α a sharp front of desynchro-
nization will propagate outwards from the poke, while
at longer times, the desynchronization propagation will
become diffusive. As a result, even for different propaga-
tion speeds cl and ct, at large times we expect that the
desynchronization obeys the elastic diffusion equation

αu̇ = c2l∇ (∇ · u)− c2t∇×∇× u (32)

with boundary conditions:

u (r, 0) =
V

α
δ
(r

l

)

ẑ

u̇ (r, 0) = 0. (33)

For simplicity, from this point on we will only be con-
cerned with the elastic diffusion equation above, and we
proceed to solve it for arbitrary longitudinal and trans-
verse speeds.
As g(r, t) is smooth and decays exponentially at infin-

ity, we can decompose u = gẑ into its irrotational and
solenoidal parts according to Helmholtz’s theorem. The
derivation is presented in the Appendix. Generalizing for
a poke in an arbitrary direction n̂, the solution for the
irrotational part is:

f(r, t) =− r̂(n̂ · r̂)fr(r, t)
− θ̂(n̂ · θ̂)fθ(r, t)− φ̂(n̂ · φ̂)fφ(r, t). (34)

This generalization will be needed later in Section IV,
when we will use these solutions to describe temporally
persistent perturbations. The solenoidal part is then eas-
ily obtained from

h = n̂g(r, t)− f (35)

and has the same angular dependence as f .
Simplifying the above equations for a poke in ẑ, we

obtain for f and g:

f (r, θ, t) = r̂ cos(θ)fr(r, t) + θ̂ sin(θ)fθ(r, t) (36)

h(r, θ, t) = r̂ cos(θ)hr(r, t) + θ̂ sin(θ)hθ(r, t). (37)

The φ components are zero (as expected from rota-
tional symmetry around the z-axis), while the depen-
dence on the angle θ of the r and θ components separates
from r and t as shown above.
We find:

fr(r, t) =
l3V

α

1

(2πσ2)3/2
(

e−
r2

2σ2

(

1 +
2σ2

r2

)

−
√
π
(
√
2σ)3

r3
erf

(

r√
2σ

)

)

(38)

fθ(r, t) = fφ(r, t) =
l3V

α

1

(2πσ2)3/2

1

2

(

e−
r2

2σ2
2σ2

r2
−
√
π
(
√
2σ)3

r3
erf

(

r√
2σ

)

)

(39)

hr(r, t) = − l
3V

α

1

(2πσ2)3/2
(

e−
r2

2σ2
2σ2

r2
−
√
π
(
√
2σ)3

r3
erf

(

r√
2σ

)

)

(40)

hθ(r, t) = hθ(r, t) = − l
3V

α

1

(2πσ2)3/2

1

2

(

e−
r2

2σ2

(

2 +
2σ2

r2

)

−
√
π
(
√
2σ)3

r3
erf

(

r√
2σ

)

)

.

(41)

In the above σ(t) is given in Eq (31).
We can rewrite Eqs (38)-(41) using the fact that the erf

function can be written in terms of the confluent hyperge-
ometric function of the first kind 1F1(a; b; z) (sometimes
also denoted as M(a, b, z)) [13]:

erf(z) =
2z√
π
e−z

2

1F1

(

1;
3

2
; z2
)

. (42)

This yields:

fr(r, t) = (1 + P (r, t)) g(r, t) (43)

fθ(r, t) =
P (r, t)

2
g(r, t) (44)

hr(r, t) = −P (r, t)g(r, t) (45)

hθ(r, t) = −
(

1 +
P (r, t)

2

)

g(r, t) (46)

where we have defined

P (r, t) =
2σ2

r2

(

1− 2 1F1

(

1;
3

2
;

r2

2σ(t)2

))

, (47)

and g(r, t) is given by Eq (30).
When cl and ct are different, f and g are given by

Eqs (38)-(41) or by (43)-(47), where the speed c is cor-
respondingly replaced by cl and ct. In that case, the de-
coupling of the equations of motion as in Eq (27) ensures
that the irrotational and solenoidal parts each propa-
gate individually at their corresponding speeds, and their
sum obeys Eq (32). At t → 0, the boundary condi-

tion is obeyed since g(r, t) → g0(r) =
V

α
δ
(r

l

)

, and

f → irrot(g0ẑ) and g → solen(g0ẑ). These analytical
results were verified against the direct solution obtained
from numerically solving Eq (32).

III. NUMERICAL RESULTS FOR POKING

To validate the preceding analysis, we carry out a
series of molecular dynamics simulations of one- and
three-dimensional solids – a linear chain and a face-
centered-cubic (FCC) lattice respectively – interacting
via a Lennard-Jones potential:

U (LJ)(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

, (48)
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where the equilibrium separation between atoms was
taken as a = 0.5 nm, the mass in atomic mass units
as m = 108 amu, and the Lennard-Jones parameters as
ǫ = 6.9 · 10−20 J (0.431 eV) and σ = a · 2−1/6. The
interaction range was limited to third-nearest neighbors.
Periodic boundary conditions were used. Note that the
desynchronization propagation is identical within one pe-
riod in periodic and infinite systems up until the desyn-
chronization wave reaches the lattice boundary. The
equations of motion were integrated by the stochastic
velocity Verlet scheme set forth in Melchionna [14, Eq
34], with care being taken to allow the system to ther-
malize prior to the perturbation applied at time t = 0.
The temperature used was 50 K, and the iteration time
step 1 fs.

A. Infinite one-dimensional chain

The infinite one-dimensional chain provides a simple
first case for applying the theory of Section II. Expand-
ing the Lennard-Jones force to harmonic order about the
equilibrium r = a = 21/6σ and considering only nearest-
neighbor interactions gives the wave speed

c ≈
√

r2∂2U (LJ)(r)/∂2r/m |21/6σ≈
√

72ǫ/m ≈ 5263m/s.

(49)
With Langevin damping α = 1.0 ps−1, we subject a chain
to a poke of strength V = 10 m s−1 at x = 0, and simu-
late until t = 100 ps. Figure 1 depicts the simulated time
evolution of the poked atom’s displacement, in compari-
son with Eq (9), with a speed of sound given by Eq (49).
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FIG. 1: (Color online) Simulated and theoretical desynchro-
nization of the poked atom as a function of time for a one-
dimensional chain of 1000 atoms (see Eq (9)).

Figure 2 shows a series of snapshots of the desynchro-
nization of the atoms in the chain, beginning at 3 ps
and 6 ps shortly after the poke as in Eq (7), through
to the diffusive limit from Eq (9) at 20 ps. At small
times a sharp front of the desynchronization propagates
outwards from the poked atom as can be seen in Figs
(a) and (b) for t = 3 ps and 6 ps, respectively. The
atoms at x > ct are completely synchronized. Soon af-
ter, the desynchronization around x . ct becomes neg-
ligible and the sharp front is no longer observable. The
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FIG. 2: (Color online) Propagation of the desynchronization
wave in response to an instantaneous perturbation. The above
three plots compare the analytic result of Eq (7) (Fig (a) - (b))
and Eq (9) (Fig (c)) with simulations of a one-dimensional
Lennard-Jones chain. All parameters were taken from the
theory.

Gaussian solution from Eq (9) becomes a very good ap-
proximation for all x once the diffusive limit has settled
in (Fig(c)). The short wavelength oscillations in the sim-
ulation results at short times are due to high frequency
underdamped modes whose behavior is not captured by
the continuum solution as we explained in Section II B.
The value of α = 1.0 ps−1 was chosen in these plots
to ensure that friction is sufficiently large that the con-
tribution from the underdamped modes is small. The
desynchronization along these modes damps out quickly,
as shown by the increasing smoothness of the simulation
results as time proceeds.

B. Periodic one-dimensional chain

When the wave is allowed to reach the boundaries of
the lattice, the behavior of the desynchronization corre-



7

10
1

10
2

10
3

 0  20  40  60  80  100

D
e
s
y
n
c
h
ro

n
iz

a
ti
o
n
 u

 [
fm

]

Time t [ps]

Simulation 200 atoms
Simulation 1000 atoms

(a)

10
-3

10
0

10
3

 0  20  40  60  80  100

D
e
s
y
n
c
h
ro

n
iz

a
ti
o
n
 u

 [
fm

]

Time t [ps]

Simulation
Model prediction

Fitted function

(b)

 40

 45

 50

 55

 60

-0.04 -0.02  0  0.02  0.04

D
e
s
y
n
c
h
ro

n
iz

a
ti
o
n
 u

 [
fm

]

Distance x [µm]

t = 23 ps Simulation
Model prediction

(c)

FIG. 3: (Color online) (a) Desynchronization of the poked
atom for a one-dimensional chain of 200 atoms with periodic
boundary conditions. Compare to Fig 1 for a chain of 1000
atoms. (b) Desynchronization of the poked atom after sub-
tracting the displacement of the center of mass. The simula-
tion is compared with the result of Eq (17) with and without
fitting for the propagation speed. (c) Desynchronization of
the chain at time t = 23 ps as compared with the theoretical
result of Eq (19). In Figs (b) and (c) the propagation speed
for the model prediction was obtained analytically from Eq
(49).

sponds to the solution for periodic boundary conditions
as in Eqs (17) and (19).
Figure 3(a) shows the desynchronization of the poked

atom as a function of time for a one-dimensional chain
of 200 atoms with periodic boundary conditions, friction
coefficient α = 1.0 ps−1, and poking velocity V = 10
m/s without subtracting the displacement of the center
of mass. On the same plot, the desynchronization of the
poked atom for a chain of 1000 atoms from Fig 1 is also
shown for comparison. It is clear that the desynchro-
nization in the two cases is identical for short time, until
the wave hits the boundaries of the lattice. At larger
times the desynchronization of the poked atom decays as

1/
√
t for the chain of 1000 atoms, while for the chain of

200 atoms with periodic boundary conditions it reaches
a constant asymptotic value given by V/ (αN) (corre-
sponding to the displacement of the center of mass).
Figure 3(b) shows the displacement of the same atom

for the chain of 200 atoms after subtracting the center
of mass displacement, with and without fitting for the
propagation speed. Note the exponential decay at large
times. In this plot the propagation speed c was fitted
to the data and a value of c ≈ 5560 m/s was obtained,
which is larger by roughly 5% than the predicted value
of
√

72ǫ/m ≈ 5263 m/s. The model prediction is also
shown, for which all parameters were taken from the the-
ory.
Figure 3(c) gives the desynchronization of the whole

lattice for the same simulation as before, for time t = 23
ps, where all parameters were predicted analytically.
Note the cosine dependence on the distance from the
poked atom. These results clearly demonstrate that the
desynchronization behavior is properly captured by the
theory.

C. Three-dimensional lattice

In this section we are testing the theory from Eq (24)
and (36) - (41) for an FCC cubic lattice of 30×30×30 unit
cells (108000 atoms), where we poke one atom in a certain
direction and choose a coordinate system such that the z-
axis is along the direction of poking. The poking velocity
is set as V = 10 m/s and the friction coefficient as α =
100 ps−1. In three dimensions we observed that we need
to simulate at a higher friction than in one dimension
in order to use the analytical results we have derived in
the continuum limit. To see how dimensionality comes
into play, consider again Eq (18). In one dimension, the

frequency of each mode was ω = ck, for k =
2π

L
n, and

we summed over n ≥ 1. In three dimensions we have one

wave number in each direction: kx,y,z =
2π

L
nx,y,z. When

we sum over each mode, we now have a triple sum over
nx, ny and nz. Consequently, higher frequency modes
now have a higher degeneracy than lower frequency ones,
and the underdamped modes have a higher contribution
than they did in the one-dimensional case. Therefore, in
order to remain mainly in the overdamped regime and
keep the effect of underdamped modes small, we need to
increase the coupling constant α.
Figure 4 gives the desynchronization uz of the poked

atom as a function of time, where the theoretical predic-
tion is given by

uz(r = 0, t) =
l3V

α

2c3l + c3t
24π3/2(clct)3

(α

t

)3/2

. (50)

These results demonstrate that, for t larger than about
0.5 ps, the z component of the desynchronization for the
poked atom decays as t−3/2 (for an infinite lattice), as
predicted by the model.
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FIG. 4: (Color online) Simulated and theoretical desynchro-
nization of the poked atom as a function of time for a cubic
three-dimensional FCC lattice of 108000 atoms. The theoret-
ical model predicts the desynchronization decreases as t

−3/2

at large times (see Eq (50)).The propagation speeds are given
in Eq (51).

Figure 5 compares the desynchronization vector field
obtained from the Langevin dynamics simulation with
the analytic results from Section II C. The plots were
obtained for time t = 4 ps and t = 8 ps and for y = 0 (the
solution is invariant under rotations about the z-axis).
The qualitative agreement between the simulations and
the theory is very good.
In the three-dimensional case we fitted for the propa-

gation speeds. Throughout the paper we use:

c2l ≈
70ǫ

m

c2t ≈
18ǫ

m
. (51)

It should also be emphasized that the theory is based
on the assumption that the solid is continuous and elasti-
cally isotropic. In the case of the Lennard-Jones solid, the
speed of sound is not identical along different directions
in the solid. Furthermore, the discrete nature of the sys-
tem is more evident in 3D given that we can only afford
to follow desynchronization across a few tens of lattice
cells in each direction, as opposed to hundreds or thou-
sands of atoms aligned in a chain in the one-dimensional
case. This leads to deviations from the theoretical pre-
diction which depend rather strongly on the orientation
of the FCC lattice: our simulations produced somewhat
different results depending on whether the poke was done
in the direction of a nearest neighbor (e.g. 〈110〉), or in
some other direction (e.g., 〈100〉 or 〈111〉) (note that we
are still defining the coordinate system such that the di-
rection of poking corresponds to the z-axis). To illustrate
this effect, compare Fig 5 in which the direction of pok-
ing was 〈100〉 (towards a second-nearest neighbor), with
Fig 6 where the atom was poked towards a nearest neigh-
bor (〈110〉). Apart from this difference, the parameters
of the two simulations were identical, and in both cases
we used the same speeds for the theoretical model. For
instance it can be observed in Fig 5 that the simulation
results are slightly lower that the prediction at θ = 0◦

(x = y = 0), while at the same angle in Fig 6 the simula-
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FIG. 5: (Color online) Desynchronization vector field u [fm]
for y = 0 at t = 4 ps in (a) and t = 8 ps in (b). The arrows
have been scaled by 0.48 at 4 ps and 1.5 at 8 ps for clar-
ity. The Langevin dynamics simulation is compared to the
analytic results of Section II C, where we have used the prop-
agation speeds from Eq (51). In this simulation the poking
was done in the direction of a second-nearest neighbor (i.e.
〈100〉 direction).
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FIG. 6: (Color online) The same desynchronization vector
field u [fm] as in Fig 5, but now the simulation was done
by poking the atom towards a nearest neighbor (i.e. 〈110〉
direction). The propagation speeds for the model prediction
are the same as in Fig 5, the time is t = 4 ps and the scaling
0.48 as in Fig 5 (a).

tion and prediction match very well. On the other hand,
the simulation matches well at θ = ±45◦ in Fig 5, but is
slightly larger in Fig 6.
Nevertheless, the analytical solutions still provide ade-

quate estimates of the desynchronization, and enable the
prediction of its spread throughout the lattice.

IV. PERSISTENT PERTURBATIONS:

“SWITCHING”

We now turn our attention to temporally persistent
disturbances applied to a system of atoms. This is
achieved here through switching, i.e., the substitution of
the sequence of random forces on a single atom in the
system (the forces on the other atoms being otherwise
matched). The desynchronization begins at the atom to
which a different noise is applied and spreads with time.
As will be shown in the next two sections, once the desyn-
chronization wave hits an atom, it never fully recovers. In
one dimension the desynchronization spreads through the
chain and for each atom its variance continuously grows
with time. In three dimensions, we show that the os-
cillations are spatially localized and decrease faster with
distance from the switched atom. Interestingly, and con-
trary to the one-dimensional case, the desynchronization

remains localized around the switched atom and does not
propagate far through the medium.

A. Switching in one dimension

In the case of switching, we can obtain similar equa-
tions for the desynchronization as in the poking case,
with the addition of an extra term:

∆A(x, t) = ξ(t)δ(x/a) (52)

giving the difference in the stochastic forces applied to
the switched atom. We now find that the desynchroniza-
tion evolves according to:

∂2u

∂t2
+ α

∂u

∂t
− c2

∂2u

∂x2
=

1

m
∆A(x, t) (53)

u(x, 0) = 0 (54)

∂u

∂t
(x, 0) = 0. (55)

Here δ represents the Dirac-delta function as before, indi-
cating that the difference in the stochastic forces applies
only to the switched atom at x = 0. ξ(t) is a Gaussian
distributed random variable, where the expectation value
and autocorrelation satisfy:

〈ξ(t)〉 = 0 and (56)

〈ξ(t)ξ(t′)〉 = 2 · 2αmkBTδ(t− t′)

= 2Γδ(t− t′). (57)

Note that this is twice the autocorrelation Γ of the ran-
dom force, as the difference of two samples from a Gaus-
sian distribution is also Gaussian-distributed, but with
twice the variance. With respect to the initial conditions,
the lattice at time t = 0 s does not change (initial veloc-
ities and positions are the same, even for the switched
atom). Therefore, the difference in position and in veloc-
ity at t = 0 s is given by Eq (54) and (55).
In this case, Riemann’s Method [8] gives the following

solution for u(x, t):

u (x, t) =
1

2mc
·

∫ t

0

∫ x+c(t−t′)

x−c(t−t′)

I0

( α

2c

√

c2(t− t′)2 − (x − x′)2
)

· e−α
2
(t−t′)∆A(x′, t′)dx′dt′ (58)

=
a

2mc

∫ t− |x|
c

0

I0

( α

2c

√

c2(t− t′)2 − x2
)

· e−α
2
(t−t′)ξ(t′)dt′, (59)

where t′ is the time at which each force ∆A(x′, t′) is ap-
plied. Using Eq (59), we evaluate the variance

〈

u2(x, t)
〉

over different random seeds by making use of the known
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distribution of ξ(t):

〈u(x, t)〉 = 0 (60)

〈

u2(x, t)
〉

=
Γa2

2m2c2
∫ t− |x|

c

0

I 2
0

( α

2c

√

c2(t− t′)2 − x2
)

· e−α(t−t′)dt′. (61)

Substituting for Γ = 2αmkBT , the prefactor shows
that the rms desynchronization should be proportional
to

√
T where T represents the temperature.

A simpler analytical form can be obtained by using the
asymptotic limit of the modified Bessel function I0. The
variance of the desynchronization becomes:

〈

u2(x, t)
〉

=
Γa2

2παm2c2

∫ t

|x|
c

1

δt
e−

αx2

2c2δt d (δt) (62)

where we define δt = t − t′ to be the time elapsed since
the application of the random force. The approximation
corresponds to the assumption that x (and consequently
δt) is sufficiently large. In practice, we will see in Section
V that when we compare to molecular dynamics sim-
ulations, this approximation is very good even for the
nearest-neighbors of the switched atom.

Furthermore, if we take a Taylor expansion around x =
0 in Eq (62), we can see that for small fixed x (and any
time t where the condition x2/t is also negligible), the
variance grows logarithmically in time:

〈

u2(x, t)
〉

≈ Γa2

2παm2c2
(ln t− ln (|x|/c)) for

αx2

2c2δt
≪ 1.

(63)
The switched atom itself is the only atom for which we
cannot predict the magnitude of the desynchronization,
since the predicted value goes to ∞ as x → 0. In prac-
tice in a simulation this results in large, but still finite
desynchronization for the switched atom.

Evaluating the integral in Eq (62), we obtain that the
variance is given by:

〈

u2(x, t)
〉

=























Γa2

2παm2c2

(

E1

(

αx2

2c2t

)

− E1

(

α |x|
2c

))

,

for |x| < ct

0, otherwise,
(64)

where E1 (ξ) =
∫∞

ξ

e−ǫ

ǫ
dǫ is the exponential integral

function.

Consequently, in one dimension the desynchronization
spreads through the lattice and leads to a desynchroniza-
tion amplitude that continuously grows with time.

B. Switching in three dimensions

We start again from the damped elastic wave equa-
tion as for poking, but with the additional noise term

∆A (r, t) = ξ (r, t) δ
(r

l

)

which gives the difference in

the applied forces on the switched atom (at r = 0):

ü+ αu̇ =
1

ρ

(

(λ+ µ)∇ (∇ · u) + µ∇2u
)

+
1

ρ
∆A (r, t) . (65)

Here each component of ξ in cartesian coordinates is
Gaussian distributed with the same variance 2Γ as in
the one-dimensional case (c.f. Eq (57)). Therefore, the
magnitude ξ of ξ has a Maxwell-Boltzmann distribution
with the second moment given by

〈

ξ2
〉

= 6Γ. The direc-
tion of each ∆A is randomly distributed with uniform
probability.
As before, we expect that the desynchronization

reaches a diffusion limit. The response to one single ap-
plied force difference ∆A (t0) at some time t0 will there-
fore have the same time evolution as for poking. The
overall solution will be given by the contribution of all
applied forces ∆A over time.
Consider first the solution for poking in an arbitrary

direction n̂ defined by azimuthal angle ψ and polar angle
χ:

n̂ = (cos(χ) sin(ψ), sin(χ) sin(ψ), cos(ψ))
t
. (66)

The solution was described in Section II C (see Eqs (34)-
(41)).
Now replace the poking velocity V by 1/m (with m the

mass of the atoms), and denote the resulting solution by

uψ,χ(r, t) = fψ,χ(r, t) + hψ,χ(r, t) (67)

with f and h the irrotational and solenoidal parts prop-
agating at speeds cl and ct respectively.
Then the solution for switching in three dimensions is:

uswitch(r, t) =

∫ t−
r

c

0

uψ(t′),χ(t′)(r, t− t′)ξ(t′)dt′, (68)

where ψ(t′), χ(t′), and ξ(t′) are all independent random
variables describing the force difference ∆A applied at
time t′. The equation above reflects the fact that it takes
a minimum time r/c for a wave starting at the origin to
reach an atom at distance r. The wave front for the r
component ur(r, t) behaves as the wave front of a longi-
tudinal wave since the desynchronization is in the direc-
tion of the wave propagation. Therefore the wave front
propagates radially outwards with speed cl. Similarly,
the wave front for the θ and φ components uθ(r, t) and
uφ(r, t) behave as the wave fronts of shear waves, and
travel radially outwards with speed ct. As a result, the
speed c in the integration limit above should be replaced
by cl for ur and by ct for uθ and uφ.
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As for switching in one dimension, we are interested
in characterizing the expectation value and variance of
the desynchronization, and their evolution in time. It
is easy to show that the expectation value of the desyn-
chronization is zero. This is expected since the system
is spherically symmetric for uniformly distributed direc-
tions of the applied forces. What remains to be done is
to compute the variance.
For two arbitrary independent random variablesX and

Y , the variance of their product is [15]:

Var(XY ) = 〈X〉2 Var(Y ) + 〈Y 〉2 Var(X) + Var(X)Var(Y )

=
〈

X2
〉

Var(Y ) + 〈Y 〉2 Var(X). (69)

Now take X to be the magnitude ξ(t) obeying
〈ξ(t)ξ(t′)〉 = 6Γδ(t− t′) as we’ve explained earlier, and Y

to correspond to the angular part: n̂ · r̂, n̂ · θ̂, or n̂ · φ̂.
For uniform distribution of the direction, the joint prob-
ability density function of ψ and χ is sin(ψ)/(4π), from
where the expectation value and variance of the angular
parts are:

〈n̂ · r̂〉 = 0 (70)

Var(n̂ · r̂) = 1

4π

∫ π

0

dψ

∫ π

−π

dχ sin(ψ)(n̂ · r̂)2 =
1

3
. (71)

The same results are obtained for n̂ · θ̂ and n̂ · φ̂.
Putting everything together, the variance of the desyn-

chronization for switching (written in spherical coordi-
nates) is given by:

Var(uswitch
i )(r, t) = 2Γ

∫ t

r/c

dδt ui(r, δt)
2, (72)

where the index i stands for the radial and angular com-
ponents i = r, θ, φ; ui = fi + hi; and fi and hi are
given by Eqs (38)-(41) (with V replaced by 1/m, and c
by cl and ct respectively). The propagation speed c in
the integration limits corresponds to cl for ur(r, t), and
ct for uθ(r, t) and uφ(r, t) respectively. As in the one-
dimensional case, we have changed variables: δt = t− t′

represents the time elapsed since the application of the
random force at time t′.
We were not able to analytically perform the above

integral in terms of fi and hi. Instead, numerical inte-
gration is used to compute the variance of the desynchro-
nization. The numerical integrations show that for any
fixed r, the desynchronization reaches a finite asymptotic
value.
To isolate the dependence on r, we note that ui(r, δt)

can be written as δt−3/2ūi(δt/r
2), where ūi(δt/r

2) is a
function of δt/r2. Changing variables τ ≡ δt/r2, we get:

Var(uswitch
i )(r, t → ∞) =

2Γ

r4

∫ ∞

1/rc

dτ ūi(τ)
2, (73)

which goes roughly as 1/r4.

Therefore, we have seen that, contrary to the one-
dimensional case, the desynchronization remains local-
ized in three dimensions and does not diverge to infinity
as t → ∞. Instead, its rms decreases as 1/r2 with dis-
tance from the switched atom. In the next section we will
compare our results with molecular dynamics simulations
of three dimensional FCC crystals.

V. NUMERICAL RESULTS FOR SWITCHING

In this section we test our analytical results for persis-
tent perturbations against molecular dynamics simula-
tions. The desynchronization for each simulation is now
dependent on the exact sequence of random noise forces
applied on the switched atom, and we therefore average
over many realizations to compute the rms desynchro-
nization.

A. Switching in one dimension

We start with a one-dimensional chain of 3200 atoms
interacting via the Lennard-Jones potential, with friction
coefficient α = 1 ps−1 and temperature 10 K. The simu-
lation results are averages over 400 simulations initialized
with different random seeds, while the theoretical predic-
tion is given by the square root of the variance found in
Eq (64). Note that the predicted rms at x → 0 was in-
finite for the continuum approximation. In practice in a
molecular dynamics simulation this results in finite but
large oscillations of the switched atom over time.
Figure 7 shows the predicted and simulated rms desyn-

chronization as a function of time for three different
atoms: at x = a = 0.5 nm (namely the first neighbor
of the switched atom), x = 50 nm, and x = 200 nm.
As can be seen in Fig 7, the agreement between predic-
tions and simulations is excellent, even at small times
and distances. As x increases, the simulated rms desyn-
chronization becomes smoother since the high frequency
oscillations imposed on the switched atom as a result of
applying the random noise sequence decay as they prop-
agate further from the switched atom.
Figure 8 shows the predicted and simulated rms vs

distance at times t = 50 ps, t = 250 ps and t = 500 ps,
again according to Eq (64). It can be seen in the plots
that the desynchronization continues to spread through
the lattice with increasing time, leading to more and more
atoms becoming desynchronized.

B. Switching in three dimensions

In three dimensions we tested the theory on an FCC
lattice of 20 × 20 × 20 cells (32000 atoms) with friction
coefficient α = 100 ps−1. The simulated data was pro-
duced by averaging over 250 simulations. The theoret-
ical prediction was obtained by numerically integrating
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FIG. 7: (Color online) Root mean square of the desynchro-
nization in one dimension for three different atoms as a func-
tion of time. The predicted value is given by the square root
of Eq (64), while the simulation was obtained by taking the
rms over 400 simulations.

Eq (72), with the propagation speeds given in Eq (51).
Once again, the predicted desynchronization at r → 0 in
the continuum limit is infinite, which in practice results
in finite but high oscillations for the switched atom.

Figure 9 shows the radial component of the desynchro-
nization of three different atoms vs time at r = a (nearest

neighbor of the switched atom), r = a
√
3, and r = a

√
12.

As it can be seen in the figure, the desynchronization
reaches a “steady state” with a constant rms. Atoms fur-
ther away from the switched atom are hit by the desyn-
chronization wave at later times, and reach the steady
state at later times. Figure 10 shows the simulated and
predicted rms of the desynchronization as a function of
distance from the switched atom at times t = 2.5 ps,
t = 12.5 ps and t = 25 ps. Note that indeed the distur-
bance stops growing in time and remains localized around
the switched atom. At t→ ∞ the rms desynchronization
decreases with distance r from the switched atom as 1/r2
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FIG. 8: (Color online) Predicted and simulated rms desyn-
chronization for a one dimensional chain as a function of dis-
tance from disturbance, at three different times. The simu-
lated data was obtained by taking the rms over 400 random
seeds.

as predicted.

VI. DISCUSSION AND CONCLUSIONS

Stochastic thermostats, such as the Langevin thermo-
stat, are known to cause the synchronization of trajecto-
ries initialized at different points in phase space when the
random noise is identical. Here, we quantified the spatio-
temporal robustness of this effect. Our analysis builds on
the response of one- and three-dimensional systems to an
instantaneous perturbation (localized in time and space)
in the case of Langevin molecular dynamics. Through the
harmonic approximation of the Hamiltonian, we obtained
the equation of motion for the evolution of the desynchro-
nization in the continuum limit. The desynchronization
was found to follow the damped wave equation in one di-
mension and the damped elastic wave equation in three



13

 0

 0.2

 0.4

 0.6

 0.8

 0  5  10  15  20  25

D
e
s
y
n
c
h
ro

n
iz

a
ti
o
n
 u

r 
[p

m
]

Time t [ps]

r = 0.5 nm

Simulation
Model prediction

(a)

0

0.05

0.10

0.15

0.20

0.25

 0  5  10  15  20  25

D
e
s
y
n
c
h
ro

n
iz

a
ti
o
n
 u

r 
[p

m
]

Time t [ps]

r = 0.87 nm

Simulation
Model prediction

(b)

 0

 0.02

 0.04

 0.06

 0.08

 0  5  10  15  20  25

D
e
s
y
n
c
h
ro

n
iz

a
ti
o
n
 u

r 
[p

m
]

Time t [ps]

r = 1.73 nm

Simulation
Model prediction

(c)

FIG. 9: (Color online) Rms of the radial desynchronization
for an FCC lattice for three different atoms as a function
of time, at r = a (nearest neighbor of the switched atom),
r = a

√
3, and r = a

√
12. The predicted value is given by

the square root of Eq (72) (where the integral was evaluated
numerically), while the simulation was obtained by taking the
rms over 250 simulations.

dimensions. At long times the equations of motion be-
come diffusive, and as a result the total desynchroniza-
tion integrated over all space is conserved. Our analytical
results, both in one and three dimensions, compare well
to molecular dynamics simulations of crystals interact-
ing via the Lennard-Jones potential in the high-coupling
limit.

Building on these localized response functions, we ex-
tended our analysis to time-persistent perturbation, in
which we changed the entire random noise sequence for
only one atom. In one dimension, the desynchroniza-
tion is not localized, and its rms will continuously grow
with time. Interestingly, however, this phenomenon is
not present in three-dimensional systems. Except for the
switched atom, every other atom in the lattice reaches
a “steady state”, in which the variance of its desynchro-
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FIG. 10: (Color online) Predicted and simulated rms of the
radial component of the desynchronization as a function of
distance from disturbance, at three different times. The sim-
ulated data was obtained by taking the rms over 250 random
seeds.

nization tends to a constant, asymptotic value. Further-
more, we found that at large time the rms drops roughly
as 1/r2 with distance from the center of disturbance., i.e.,
desynchronization is spatially localized.
We note that the synchronization effect has been pre-

viously observed both in Langevin and Andersen ther-
mostats, and also for rather complex systems (including
bimolecules). Therefore, although our analysis has been
focused on perfect crystals in the high coupling limit in
order to keep the results analytical and rather simple, we
expect that the localization behavior will be encountered
in other more complex systems as well.
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Appendix: Solving the Elastic Diffusion Equation for

Three-dimensional Poking

For equal propagation speeds c ≡ cl = ct, the elas-
tic diffusion equation reduces to the diffusion equation
with solution given by the three-dimensional Gaussian
u = g(r, t)ẑ from Eq (30). Since this is continuous,
with continuous partial derivatives, and decays exponen-
tially at infinity, we can decompose the desynchroniza-
tion vector field into its irrotational and solenoidal parts
f and h according to Helmholtz’s theorem [12]. We
compute the analytic forms of f and g by looking more
closely into the derivation of Helmholtz’s theorem. Using

∇2 1

|r − r′| = −4πδ(r − r′), we write u as

u(r, t) =

∫

d3r′u(r′, t)δ(r − r′)

= − 1

4π
∇2

∫

d3r′u(r′, t)
1

|r − r′| . (A.1)

Defining G(r, t) =
1

4π

∫

d3r′u(r′, t)
1

|r − r′| , we obtain:

u(r, t) = g(r, t)ẑ = −∇2G(r, t), (A.2)

from where G(r, t) = G(r, t)ẑ and G(r, t) obeys the Pois-
son equation

g(r, t) = −∇2G(r, t). (A.3)

Using that g(r, t) is the three-dimensional Gaussian given
by Eq (30), the solution to Poisson’s equation is

G(r, t) = G(r, t)ẑ =
l3V

α

1

4πr
erf

(√
αr

2
√
tc

)

ẑ (A.4)

where erf is the error function. We write ∇2G =
∇ (∇ ·G)−∇× (∇×G), and identify

f(r, t) = −∇ (∇ ·G) , h(r, t) = ∇× (∇×G) . (A.5)

The form of the solutions is nicer when written in
spherical coordinates. Using G = G(r, t)ẑ, it can be

shown that f = −(ẑ · ∇)(r̂
∂G(r, t)

∂r
), from where:

f(r, t) = −r̂(ẑ · r̂)∂
2G

∂r2
− θ̂(ẑ · θ̂)1

r

∂G

∂r
− φ̂(ẑ · φ̂)1

r

∂G

∂r
.

(A.6)

The equation above can be generalized for a poke in some
arbitrary direction n̂. In that case, we simply need to
replace the unit vector ẑ in the equation above by the
unit vector n̂. The solenoidal part is h = n̂g(r, t) − f

and has the same angular dependence as f . We define:

fr(r, t) = −∂
2G

∂r2
; fθ(r, t) = fφ(r, t) = −1

r

∂G

∂r

hr(r, t) = (g +
∂2G

∂r2
); hθ(r, t) = hθ(r, t) = (g +

1

r

∂G

∂r
).

(A.7)

The solutions are written in full in Eq (38)-(41). When
the propagation speeds are different, one simply has to
replace c by cl or ct in the final solutions for f and g

respectively as described in Section II C.
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